博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ Layout
阅读量:5056 次
发布时间:2019-06-12

本文共 3530 字,大约阅读时间需要 11 分钟。

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 13706   Accepted: 6581

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 11 3 102 4 202 3 3

Sample Output

27

Hint

Explanation of the sample: 
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

思路:差分约束系统。
一共有 ① u 到 v  的距离小于等于 d ,即 v - u < = d 。② u 到 v 的距离大于等于 d ,即 u - v > = d 。③一个奶牛对应一个位置,即 u - v > = 0 。
然后就可以列约束关系,转化成最短路问题解决了。 
#include
#include
#include
#include
#include
#define MAXN 1001000using namespace std;queue
que;int n,ml,md,tot,flag;int vis[MAXN],dis[MAXN],cnt[MAXN];int to[MAXN],net[MAXN],cap[MAXN],head[MAXN]; void add(int u,int v,int w){ to[++tot]=v;cap[tot]=w;net[tot]=head[u];head[u]=tot; }void spfa(){ memset(vis,0,sizeof(vis)); memset(dis,0x7f,sizeof(dis)); dis[1]=0;vis[1]=1; cnt[1]++;que.push(1); while(!que.empty()){ int now=que.front(); que.pop();vis[now]=0; for(int i=head[now];i;i=net[i]) if(dis[to[i]]>dis[now]+cap[i]){ dis[to[i]]=dis[now]+cap[i]; if(!vis[to[i]]){ if(++cnt[to[i]]>n){ printf("-1");exit(0); } vis[to[i]]=1; que.push(to[i]); } } } if(dis[n]==2139062143) printf("-2"); else printf("%d",dis[n]);exit(0);}int main(){ scanf("%d%d%d",&n,&ml,&md); for(int i=1;i<=ml;i++){ int a,b,d; scanf("%d%d%d",&a,&b,&d); add(a,b,d); } for(int i=1;i<=md;i++){ int a,b,d; scanf("%d%d%d",&a,&b,&d); add(b,a,-d); } for(int i=1;i<=n;i++) add(i,i-1,0); spfa();}

 

转载于:https://www.cnblogs.com/cangT-Tlan/p/9063621.html

你可能感兴趣的文章
课堂小练习: 设计、定义并实现Complex类
查看>>
.net 下载excel文件和上传文件
查看>>
c# 四舍五入、上取整、下取整(转)
查看>>
List<Report> list结果的排序(升序\降序)实现Compare接口
查看>>
[编写高质量代码:改善java程序的151个建议]建议132 提升JAVA性能的基本方法
查看>>
P1158 导弹拦截
查看>>
006.三极管
查看>>
shell基础part3
查看>>
python datetime笔记
查看>>
leetcode 71. 简化路径(Simplify Path)
查看>>
leetcode 892. 三维形体的表面积(Surface Area of 3D Shapes)
查看>>
[翻译]各个类型的IO - 阻塞, 非阻塞,多路复用和异步
查看>>
C# 类的序列化和反序列化
查看>>
(转)跟我一起写MAKEFILE
查看>>
Linux内存段的分析
查看>>
网卡启动问题
查看>>
Ruby元编程:单元测试框架如何找到测试用例
查看>>
[FJOI2016]神秘数(脑洞+可持久化)
查看>>
android配置开发环境
查看>>
PhpStorm本地断点调试
查看>>